Sharif Quantum Information Group

Topology and Quantum Computation

Vahid Karimipour,
Sharif University of Technology, Iran.

Sharif Colloquium 1395

The origins of Knot Theory

Vortex lines in fluids are stable!

Kelvin
Atoms are Knots in Ether!

They are stable and take many forms.

After 10 Years!

Knots and periodic table of elements

CD. B

$$
(0)+g)+E
$$

Two Dimensional Manifolds

Three Dimensional Manifolds?

Dehn Surgery

Max Dehn

Knot Invariants

Knot Invariants

$$
K \sim K^{\prime}
$$

$W(K)=W\left(K^{\prime}\right)$

Knot Invariants

Jones Polynomial

Kauffman Polynomial

Kauffman Bracket ~ Jones Polynomial

$O=-a^{2} \cdot a^{2}$

Kauffman Bracket ~ Jones Polynomial

Opening each crossing $\xrightarrow{\longrightarrow}$

Two simpler diagrams

A computationally Hard Problem

$$
2^{N} \text { Crossings }
$$

Quantum Field Theory and the Jones Polynomial

$$
Z=\int d A e^{i S}
$$

$S=\int d^{3} x \operatorname{Tr}\left[A \wedge d A+\frac{2}{3} A \wedge A \wedge A\right]$

$?$

Michael Freedman, Microsoft Station Q University of California, Santa Barbara

Alexi Kitaev, Caltech

Topological Quantum Computation

Error Free Quantum Computation

An excitation (a quasi particle) which is not topological

Spins in Ising Model

You flip the spin by a local operator and the excitation is removed!

An excitation (a quasi particle) which is topological

You cannot remove the excitation by local operations.flip the spin by a local operator and the excitation is removed!

An excitation (a quasi-particle) which is topological.

Topology protects the excitation.

$\phi: S^{1} \longrightarrow S^{1}$
$\phi:$ Space \longrightarrow Spin

Winding number $=q=1$

An excitation (a quasi-particle) which is topological.

Topology protects the excitation.

$$
\phi: S^{1} \longrightarrow S^{1}
$$

$\phi:$ Space \longrightarrow Spin

Winding number $=q=-1$

Quasi particles have charge!

Anyon with charge $\mathrm{q}=1$

Anyon with charge $\mathrm{q}=1$

The basic principles

1- There are many body systems whose ground states have topological charge

2-The degeneracy of the ground state depends on the number of these particles.

The higher the number of charges
\longrightarrow The higher the degeneracy

$$
\left|g_{1}\right\rangle,\left|g_{2}\right\rangle,\left|g_{3}\right\rangle, \ldots \ldots\left|g_{N}\right\rangle
$$

3-The system has a gap.

We always stay in the ground space.

Combination of topological charges

$$
q=1+(-1)=0
$$

Example: Fibonacci Anyons 0 and 1

$1 \times 1=1$

$$
1 \times 1=0+1
$$

By two Fibonacci Anyons, we cannot make a qubit since their total charge will be different and so we cannot make linear superposition of them

By three Fibonacci Anyons, we can make a qubit

With three Fibonacci anyons with total charge zero, we cannot make a qubit.

Here is there is no degeneracy.

With three Fibonacci anyons with total charge one, we can make a qubit.

Here is there is degeneracy.

The ground state with n Fibonacci anyons with total charge 1, has a degeneracy given by

$$
\begin{gathered}
\phi^{n} \\
\phi=\frac{\sqrt{5}+1}{2}
\end{gathered}
$$

$\phi=$ quantum dimension

$$
\begin{aligned}
& 1^{n}=a_{n} 0+b_{n} 1 \\
& 1^{1^{n+1}}=a_{n} 0 \times 1+b_{n} 1 \times 1 \\
& =a_{n} 1+b_{n}(0+1) \\
& \\
& =b_{n} 0+\left(a_{n}+b_{n}\right) 1
\end{aligned}
$$

$$
\begin{aligned}
& a_{n+1}=b_{n} \\
& b_{n+1}=a_{n}+b_{n}
\end{aligned}
$$

$$
\binom{a_{n+1}}{b_{n+1}}=\left(\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right)\binom{a_{n}}{b_{n}}
$$

$$
\phi_{ \pm}=\frac{1 \pm \sqrt{5}}{2}
$$

$$
b_{n} \sim \phi_{+}^{n}
$$

Can we really think of these

as qubits

|0)
and
|1)
?

For example, what are the following?

Answer: They should be linear combinations of the previous ones.

Consistency Conditions

5-Consistency Relations?

$$
F=\left(\begin{array}{cc}
\phi & \sqrt{\phi} \\
\sqrt{\phi} & -\phi
\end{array}\right)
$$

$$
\phi=\frac{\sqrt{5}-1}{2}
$$

Braiding

We can do this in two different ways.

The charges obey certain fusion and braiding rules.

The braiding matrix

$$
\begin{aligned}
& 0\rangle \longrightarrow R_{a}|\bigcirc 0\rangle \\
& R=\left(\begin{array}{ll}
R_{0} & \\
& R_{1}
\end{array}\right)=\left(\begin{array}{cc}
a \\
e^{\frac{4 \pi i \pi}{5}} & \\
& -e^{\frac{2 \pi}{5}}
\end{array}\right)
\end{aligned}
$$

It is not so simple!

$$
=\sum_{\nu}\left(F_{a b c}^{d}\right)_{\mu, \nu}
$$

It is not so simple!

Quantum Gates

$$
\sigma_{1}=R
$$

$$
\sigma_{2}=F R F
$$

$\sigma_{1}=R=R_{z}\left(\frac{3 \pi}{10}\right)$
$\sigma_{2}=F R F=R_{n}(\theta)$

$R_{z}\left(\frac{6 \pi}{10}\right)$
$R_{n}(2 \theta)$

$\sigma_{1} \sigma_{2} \sigma_{2} \sigma_{1} \sigma_{1}$

$\sigma_{1} \sigma_{2} \sigma_{2} \sigma_{1} \sigma_{1} \sigma_{2} \sigma_{2}$

$\sigma_{1} \sigma_{2} \sigma_{2} \sigma_{1} \sigma_{1}$

Two qubit gate Control Gate

With one qubit gate and a control two qubit gate, we can do universal quantum computation.

With one qubit gate and a control two qubit gate, we can do universal quantum computation.

[1] Braid Topologies for Quantum Computation
N. E. Bonesteel, Layla Hormozi, Georgios Zikos, Steven H. Simon, PhysRevLett.95.140503,

End of part II

